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Can We Trust NNs in Mission-critical Tasks?

Autonomous Driving Medical Equipments Security/Surveillance
Aircraft Autopiloting Al-based Diagnosis Systems
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Introduction

Can We Trust NNs in Mission-critical Tasks?

Researchers say “no”...

o

“Speed Limit 3@”

“Optical adversarial attack” by Gnanasambandam et al., ICCV 2021
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“Adversarial attacks on medical machine learning” by N. Cary et al., Science
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What is Neural Network Verification?

We hope to prove that NNs have some desired properties we can formally trust:
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What is Neural Network Verification?

Robustness perturbation set (e.g. a £, norm ball)

attack

Lady “\h}; -----
(missed by attack) at

any noise in
perturbation set

e \Verification requires a formal proof to show the property holds
e Inthe robustness verification setting, a model can't be attacked # Verified
e Many heuristic defense was broken under stronger attacks (e.g., Athalye et al. 2018)

e A verified model cannot be attacked by any attacks (including unforeseen ones)
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Basic Formulation

The Basic Formulation of Robustness Verification

Consider a simple binary classification case:

4 . )
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Input is a point \ - )
Neural Network
Positive
Example

AAAI 2022 Tutorial

) f(zg) = 1.2

Output is a score

fl®o) >0  f(zo) <0

Negative
Example
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The Basic Formulation of Robustness Verification

Suppose f(zo) > 0. Can we verify this property:

i 1
1 Safe Goal: Prove
we 1 |
..... °
Decision Boundary : Z( : f(z) >0
L J For all x in the green box
Class +1 C (a perturbation around Xo)

f@) > 0 M
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Basic Formulation

The Basic Formulation of Robustness Verification

Suppose f(zo) > 0. Can we verify this property:

f(z) > 0,Vx € C

| 0\ VR Outputis a
ﬁi & S fM range/set of scores
z® —> K@_’@‘ XD =—2)/0.2]< f(z) < 2.2
H (X )— : y
C \ S J “cat” evenin the
Input is a set worst case

Neural Network

Must consider a set of infinite points as the input of the NN.
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The Basic Formulation of Robustness Verification

Assuming f(z¢) > 0, we solve the optimization problem to find the worst case:

f* = min f(z)

xeC

C is usually a perturbation set “around” x, e.g., C := {z|||z — zo||, <€}
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Basic Formulation

The Basic Formulation of Robustness Verification

Multi-class case:
output bounds

Data perturbed
arbitrarily within
a set

(guaranteed score ranges)

Neural network or 23< cat =45
any general 4'<>-0.8 < dog =<1.2
-4.2 < panda < -0.1

computations

we guarantee that “cat” stays top-1
under input perturbations
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Why the Verification Problem is Challenging?

This is the fundamental problem we want to solve (wong & Kolter 2018, Salman et al. 2019):

f* — min z(lj)/ Last layer output f(x), at layer L
pre-activation

st. 2 = W(i) ﬁ(i_l) + p(%) ie{l,---,L} Linear constraints
10 O'(Z(i)) ie{l,---,L—1} Non-linear, non-convex constraints

30 — x, x€C Input perturbations

20 3 e 5(2) 23

@_' Wb ReLU W ReLU w® —»@
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Why the Verification Problem is Challenging?

30 — a(z(i)),z' e{l,---,L—1} Non-convex constraints

e.g., ReLU function

5(9)

S0

The constraint says that (2('5) ,2\9) € Graph(ReLU)

Generally, NP-complete (Katz et al., 2017)
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Why the Verification Problem is Challenging?

e Approach 1: Using mixed integer programming (MIP) encoding of ReLU
neurons (Tjeng et al. 2017) => Complete verification which solves the exact f*

2(0) a=0 a=1

)

ac {0,1}

2 = ReLU(2) 50 — 30 — L)
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Why the Verification Problem is Challenging?

e Approach 2: Relax the MIP to a LP (salman et al. 2019) => Incomplete verification:
find a lower bound of f* If lower bound >0, the network is verifiably robust

o Still requires an LP solver, which can still be slow for large networks

o LP often produces loose bound; if lower bound << 0 it is useless

lower lower

bound f* (unknown) bound f* (unknown)
] 1 I I I n
O u u U
Provably , 0
robust] Don’'t know!
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Neural Network Verification: History

* SMT (Huang et al., 2017;
Ehlers 2017)

* MILP (Cheng et al 2017; Tjeng

et al., 2019)
* Reluplex (Katz et al., 2017)

“Bound propagation”-based

+ Convex Adversarial Polytope
(Wong & Kolter 2018)

+ CROWN (Zhang et al., 2018)

+ DeepPoly (Singh et al., 2019)

* Neurify (Wang et al., 2018)

* Branch and bound with LP solver
(Bunel et al., 2018; 2020; Lu &
Kumar., 2019)

+ SDP Relaxation (Raghunathan et
al., 2018; Dathathri et al., 2020)

+ Optimal Convex (Tjandraatmadja
et al, 2020)

+ Lagrangian Decomposition
(Bunel et al., 2020)

+ a-CROWN + BaB (Xu et al., 2020)
+ B-CROWN + BaB (Wang et al.,
2021)

+ Active Set (De Palma et al., 2021)

>

2017

First era: formulate NN
verification using
existing solvers

<100 neurons
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2018 2019 2020

Second era: Efficient
Incomplete Verifiers

Third era: Branch &
Bound (BaB) based
Solvers

2021 year

Fourth era: Efficient and
GPU accelerated BaB

CNN with >100K neurons
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Neural Network Verification: Representative Algorithms

Cost/Time Incomplete Complete
\ Verification Verification
10000s MILP/SMT/Reluplex
SDP
BaB (LP solver
based)
SDP (GPU
100s i Accelerated)
Linear a,8-CROWN (BaB
Programming with bound Faster
(LP) propagation)
Optimized bound
1s propagation
(a-CROWN)
A
Bound propagation
0.01s (CROWN/DeepPoly)
loose D tight Bound Tightness
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Tighter / More powerful

(higher is better)
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Next Part

Basic Verification Algorithms (40min)

Practical Verification Tools (1 hr)
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