
AAAI 2022 Tutorial on Neural Network Verification Part I: Introduction to NN Verification

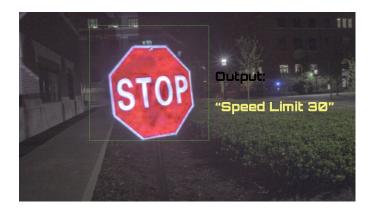
Huan Zhang (CMU), Kaidi Xu (Drexel), Shiqi Wang (Columbia) and **Cho-Jui Hsieh (UCLA)** Feb 23, 2022

Introduction

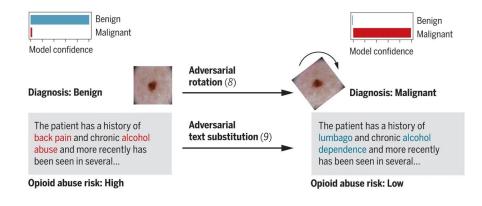
Can We Trust NNs in Mission-critical Tasks?

Autonomous Driving Aircraft Autopiloting Medical Equipments Al-based Diagnosis

Security/Surveillance Systems


AAAI 2022 Tutorial

Formal Verification of Deep Neural Networks: Theory and Practice


2

Can We Trust NNs in Mission-critical Tasks?

Researchers say "no"...

"Optical adversarial attack" by Gnanasambandam et al., ICCV 2021

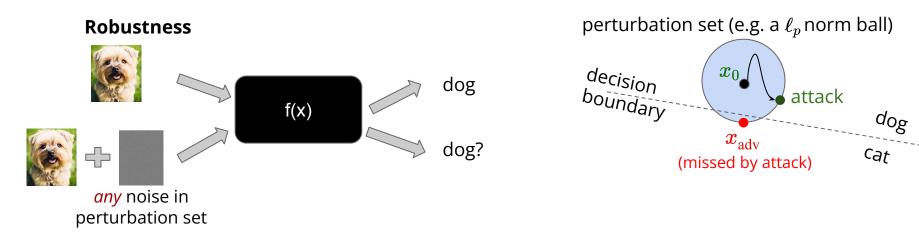
"Adversarial attacks on medical machine learning" by N. Cary et al., Science

AAAI 2022 Tutorial

What is Neural Network Verification?

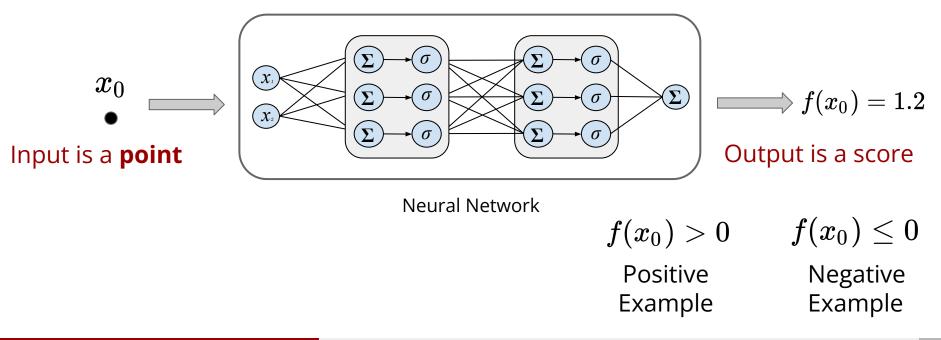
We hope to *prove* that NNs have some desired properties we can *formally* trust:

dog Interview/ f(x) no interview cat ∽ Correctness Interpretability Monotonicity what bright planet is often mistaken for a UFO? Both murcer loan $v_{\rm own}$ and jupiter are often mistaken for such an event. v_{int} Target: 9 Target: 2 Input Intruder Ownshi income

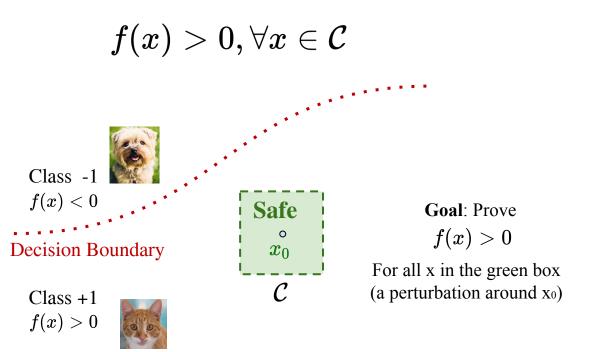

AAAI 2022 Tutorial

Robustness

Formal Verification of Deep Neural Networks: Theory and Practice

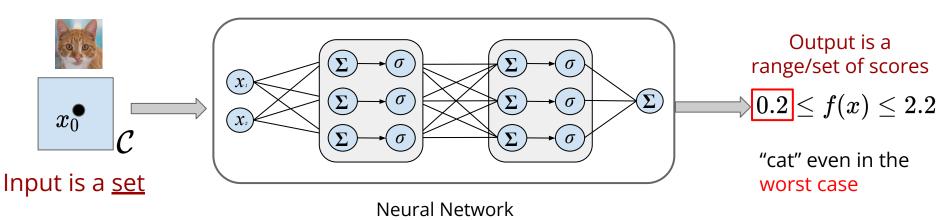

Fairness

What is Neural Network Verification?



- Verification requires a *formal proof* to show the property holds
- In the robustness verification setting, a model can't be attacked ≠ Verified
- Many heuristic defense was broken under stronger attacks (e.g., Athalye et al. 2018)
- A verified model cannot be attacked by any attacks (including unforeseen ones)

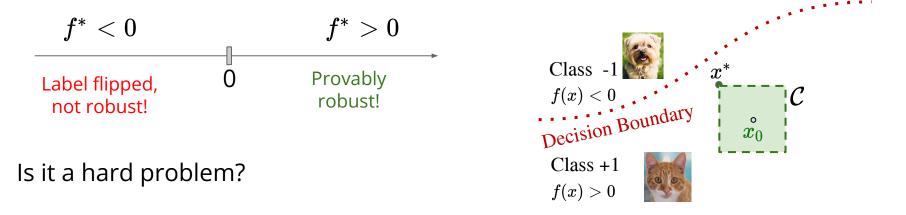
Consider a simple binary classification case:



Suppose $f(x_0) > 0$. Can we verify this property:

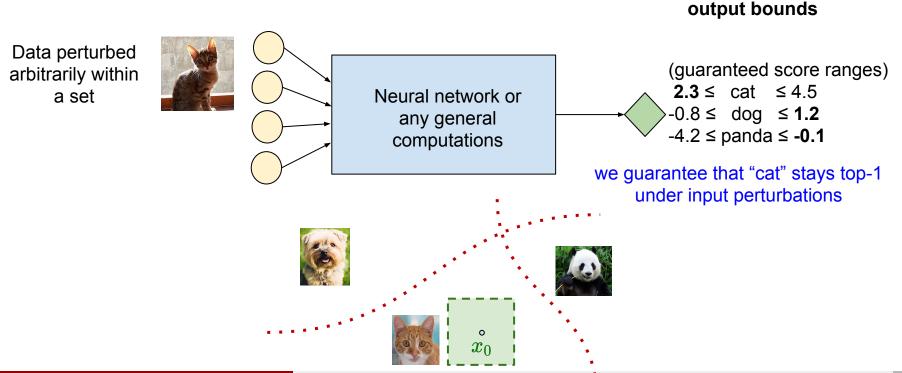
Suppose $f(x_0) > 0$. Can we verify this property:

$$f(x)>0, orall x\in \mathcal{C}$$


Must consider a set of infinite points as the input of the NN.

AAAI 2022 Tutorial

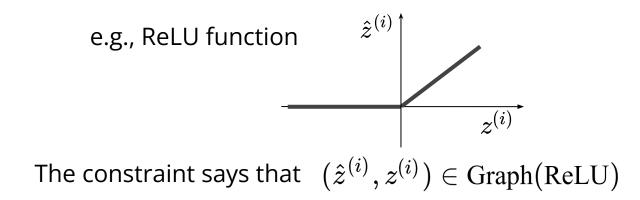
Assuming $f(x_0) > 0$, we solve the optimization problem to find the worst case:


$$f^* = \min_{x \in \mathcal{C}} f(x)$$

 $\mathcal C$ is usually a perturbation set "around" x_0 , e.g., $\mathcal C := \{x | \|x - x_0\|_p \le \epsilon\}$

AAAI 2022 Tutorial

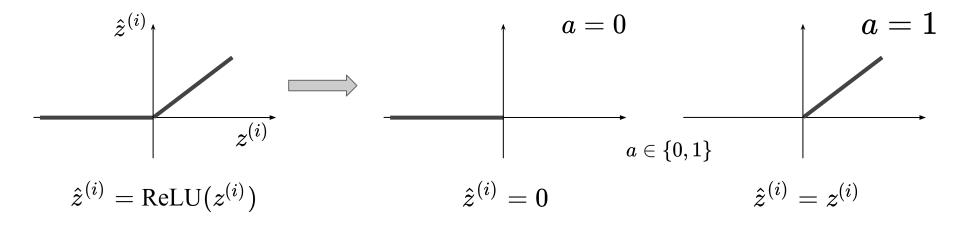
Multi-class case:


This is the fundamental problem we want to solve (Wong & Kolter 2018, Salman et al. 2019):

$$f^* = \min z^{\binom{L}{+}} \quad \text{Last layer output } f(x), \text{ at layer L}$$
S.t. $z^{(i)} = W^{(i)} \hat{z}^{(i-1)} + b^{(i)} \quad i \in \{1, \cdots, L\}$ Linear constraints
$$\hat{z}^{(i)} = \sigma(z^{(i)}) \quad i \in \{1, \cdots, L-1\} \quad \text{Non-linear, non-convex constraints}$$
post-activation
$$\hat{z}^{(0)} = x, \quad x \in \mathcal{C} \quad \text{Input perturbations}$$

$$x \to W^{(1)} \xrightarrow{z^{(1)}} \underbrace{\hat{z}^{(1)}}_{\text{ReLU}} \xrightarrow{z^{(2)}} \underbrace{\hat{z}^{(2)}}_{\text{ReLU}} \underbrace{\hat{z}^{(3)}}_{\text{W}^{(3)}} \underbrace{f(x)}_{\text{f}(x)}$$

AAAI 2022 Tutorial

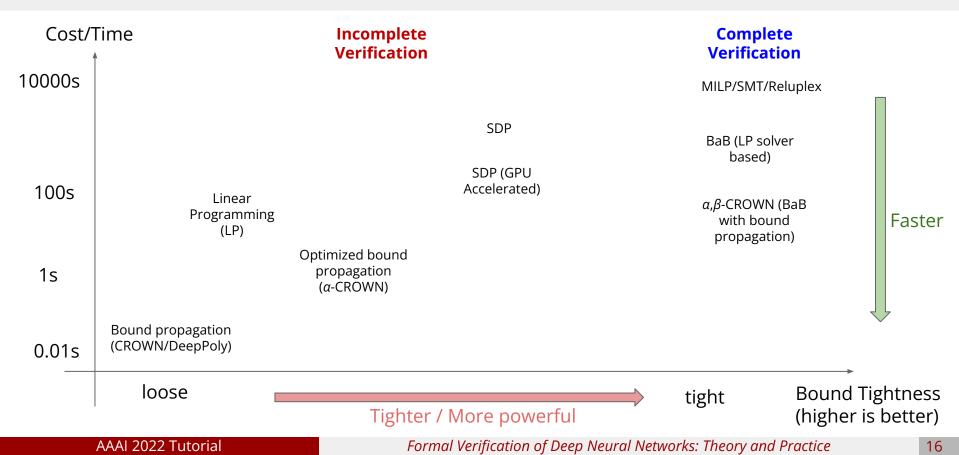

$$\hat{z}^{(i)} = \sigma(z^{(i)}), i \in \{1, \cdots, L-1\}$$
 Non-convex constraints

Generally, NP-complete (Katz et al., 2017)

AAAI 2022 Tutorial

• Approach 1: Using mixed integer programming (MIP) encoding of ReLU neurons (Tjeng et al. 2017) => Complete verification which solves the exact f^*

- Approach 2: Relax the MIP to a LP (Salman et al. 2019) => Incomplete verification: find a *lower bound* of f^* . If lower bound >0, the network is verifiably robust
 - Still requires an LP solver, which can still be slow for large networks
 - LP often produces loose bound; if lower bound << 0 it is useless


Neural Network Verification: History

 SMT (Huang et al., 2017; Ehlers 2017) MILP (Cheng et al 2017; Tjeng et al., 2019) Reluplex (Katz et al., 2017) 	 "Bound propagation"-based Convex Adversarial Polytope (Wong & Kolter 2018) CROWN (Zhang et al., 2018) DeepPoly (Singh et al., 2019) Neurify (Wang et al., 2018) SDP Relaxation (Raghunathan et al., 2018; Dathathri et al., 2020) Optimal Convex (Tjandraatmadja et al, 2020) 		• Branch and bound with LP solver (Bunel et al., 2018; 2020; Lu & Kumar., 2019)	 Lagrangian Decomposition (Bunel et al., 2020) α-CROWN + BaB (Xu et al., 2020) β-CROWN + BaB (Wang et al., 2021) Active Set (De Palma et al., 2021) 	
2017	2018	2019	2020	2021	year
First era : formulate NN verification using existing solvers	Second era : Efficient Incomplete Verifiers		Third era : Branch & Bound (BaB) based Solvers	Fourth era : Efficient and GPU accelerated BaB	
<100 neurons				CNN with	n >100K neurons

AAAI 2022 Tutorial

History and Development

Neural Network Verification: Representative Algorithms

Next Part

Basic Verification Algorithms (40min)

Practical Verification Tools (1 hr)